The Odderon and spin-dependence of elastic proton-proton scattering.

T.L.Trueman, BNL

April 29, 1998

Spin-dependence of high energy proton-proton elastic scattering provides a new and sensitive tool to search for the Odderon. The reason for this is that the asymptotic phase of the scattering amplitude is closely tied to the C of the exchanged system; thus, in leading order, if the Pomeron and Odderon have the same symptotic behaviour, up to logs, then they are out of phase by 90° . Spin dependent asymmetries depend on various real and imaginary parts of products of amplitudes and so the Odderon can dominate some asymmetries to which the Pomeron cannot contribute: thus, for example the purely hadronic piece of A_N , (Fig.1) which vanishes as $t \to 0$, is zero for purely C = +1 exchange; a deviation from zero would be a strong indicator that a Pomeron is present. (If the two parts differ in their asymptotic behaviour by powers of $\ln (s/s_0)$ there will be $\pi/\ln (s/s_0)$ corrections to this and most of the other comments made in this talk. For this reason, it will be important to measure the asymmetries over as wide a range of s as possible.) At the same time, in the CNI region the purely C = +1 spin-flip Pomeron piece is what stands in the way of using this process as a polarimeter. (Fig.2,3,4). The basic properties of the Odderon and the phase argument are given in Fig. 4 and 5.

Fig.6 lists all the measurable asymmetries using polarized beams, without final polarization measurements. A_{NN} gives a CNI-type peak if the Odderon contributes to the double spin-flip amplitude ϕ_2^O (Fig.7). If the Pomeron also couples to ϕ_2^P there will be a purely hadronic (non-enhanced) piece which will have a distinctly different shape. It may very well be possible to extract both of these pieces from measuring A_{NN} if they are not too small (Fig.8). Similar arguments can be applied to the other asymmetries. A_{SS} is basically the same as A_{NN} at small t, so additional information requires longitudinally polarized protons as well. If this is possible then complete information about the asymptotic amplitudes ϕ_-, ϕ_2 and ϕ_5 , both the C=+1 and C=-1 pieces, should be attainable. (Fig.9) The last column shows the expected dominant contributions to the purely hadronic piece of the asymmetry, based on the minimum number of Odderons and spin-flips in the combination. Of course, this will need to be checked.

A final comment: in order to use CNI in elastic p-p scattering for polarimetry it is necessary to know the ratio ϕ_5^P/ϕ_+^P ; see A_N in the Table in Fig.9. If the expectation for the dominant amplitudes for each of the asymmetries is valid, and if A_{SS} or A_{LL} is large enough to make a reliable measurement, then one can use, in addition, the measurement (or limit) on A_{SL} to determine (or bound) this ratio, independent of P. Thus elastic p-p scattering may turn out to be useful as a self-calibrating polarimeter for RHIC.

Workshop on Spin Dependence of Elastic Proton-proton scattering at RHIC Energy (Summer 1997 - sponsored by RIKEN BUL Reseach Center)

header

Buttimore

Softer

Kopeliovich

Trueman

+ others

Instigated by problem of Polarimetry at PHIC:

Hadronic Spin-flip Contribution to AN

Parametrize hadronic spin-flip:

$$\phi_5^h = \tau \sqrt{-t/m^2} (\phi_1^h + \phi_3^h)/2$$
 For s>>m², t<\phi_5^h = \frac{h}{2} (\phi_1^h + \phi_3^h)/2

$$A_N \frac{d\sigma}{dt} = \frac{\alpha \sigma_{tot}}{2m\sqrt{-t}} \{ (\mu - 1) - 2Re(\tau) \} + 2Im(\tau) \frac{\sqrt{-t}}{m} \frac{d\sigma}{dt}$$

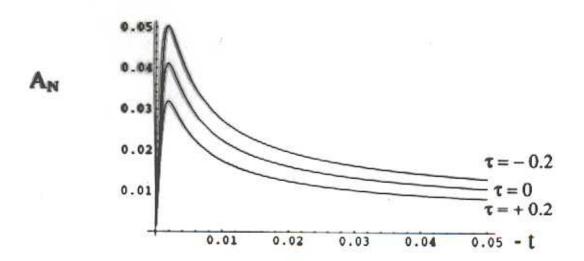
Define τ° as best limit on Re(τ):

$$|Re(\tau)| \le \tau^*$$

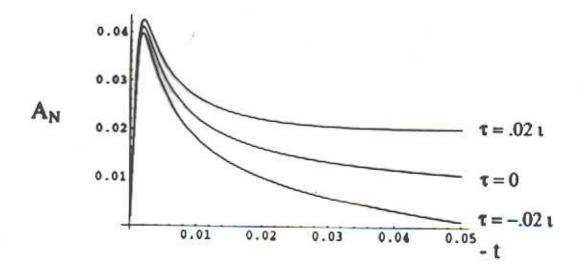
Precision of measurement of P limited by:

$$\frac{\Delta P}{P} \geq \frac{2\tau^*}{(\mu-1)}.$$

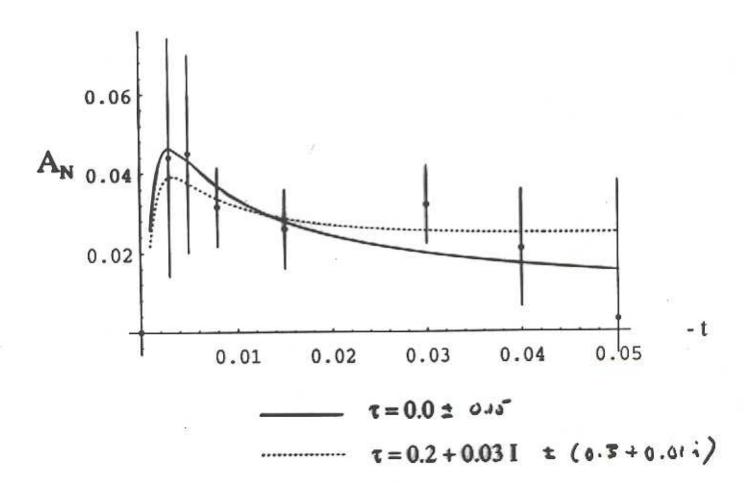
Analyzing power at RHIC for various in-phase spin-flip amplitudes



Analyzing power for various out-of-phase spin-flip amplitudes



Best fits to 704 data with and without $Im(\tau) = 0$



The Odderon

the C=-1 partner of the Pomeron

· arbitrary relative phase of b, and b-

· coupling to \$, +\$3 sives

CAB - CE 4 00 M 220

and possible large corrections to

consmated with Lukaszuk & Nicolesau (1878), Leader etal, Lipatar etal

r's company

coupling to \$2 \$5

Phase of scattering amplitudes

Theorem of van Hove - based on real analylicity of scattering amplitudes

If $f(-s) = \chi f(s)$, $\chi = \pm 1$

and fish ~ s as s > 0

then phase of fixe they get

ie 14/2 7 = -1

pure imaginary (with calculable //gs real pout)

(mportance of measuring s-dependence)

For pp need C and crossing:

Many 2, 2 (S,t) = 1c Many 2 (S,t)

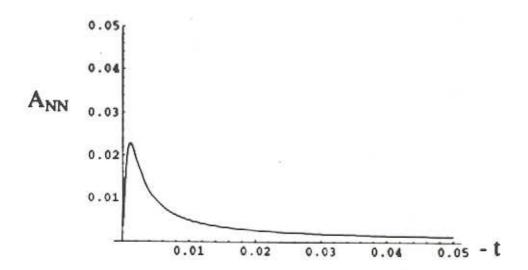
M>3/2) (1+1) = M>3-12, >, -2, +/

so $\phi_1 + \phi_3 = \phi_1$, ϕ_2 , ϕ_3 imaginary $\phi_1 - \phi_3 = \phi_1$ real as $s \to \infty$

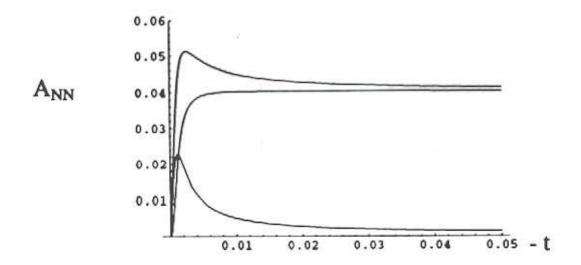
for C=+1

$$\frac{d\sigma}{dt} = \frac{2\pi}{s^2} \left(|\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_3|^2$$

of eng Buttimore, Gotsman + Lender (1978) Enhanced A_{NN} for $r_2 = .02$ I, where $\phi_2 = r_2 \phi_1$.



Comparison of A_{NN} for various values of r_2 : .02 I (lower), .02 (middle), .02 + .02 I (upper).



Asymmetry	CNI Enhanced P, P, P,	Dominant? (AS,#Odd.) \$\phi_{+}^{2} \cdot_{0}^{0} (1,1)
ANN	\$\phi_2^0	φ ^P φ ^P ₂ (2,0)
Ass	ϕ_2°	\$P\$P (30)
ASL	4_P	φ ₅ ^P ¢° (1,1) α φ ₅ ^P φ ₂ ^P (3,0)
Au	¢_P	4 P 6 (0,1)
and σ_{+ot} : $\Delta \sigma_{-}$: $\Delta \sigma_{L}$	φ+ P P P P P P P P P P P P P P P P P P P	